Lattice point sets and applications (part II)

Workshop and Summer School on Applied Analysis 2023 TU Chemnitz Chemnitz, Germany September 2023

The plan for today

The plan for today

- Weighted function spaces and norms.
- Results for numerical integration.
- Function approximation using truncated Fourier series.
- Maybe: Integration on \mathbb{R}^d .
- Again some Julia code to demonstrate things. . .

Small recap

Lattice rule = equal weight quadrature using lattice points

For $f \in \mathcal{H}_{d,\alpha,\gamma}$ approximate the d-dimensional integral

$$I(f) := \int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

by an *n*-point lattice rule with generating vector $\mathbf{z} \in \mathbb{Z}_n^d$

$$Q_{n,\mathbf{z}}(f) := \frac{1}{n} \sum_{k \in \mathbb{Z}_n} f\left(\frac{\mathbf{z}k \mod n}{n}\right).$$

Worst-case error for $f \in \mathcal{H}_{d,\alpha,\gamma}$ for a given algorithm Q_n (e.g. $Q_{n,z}$):

$$e(Q_n, \mathcal{H}_{d,\alpha,\gamma}) := \sup_{\substack{f \in \mathcal{H}_{d,\alpha,\gamma} \\ \|f\|_{d,\alpha,\gamma} \le 1}} |I(f) - Q_n(f)|.$$

 \leadsto For good lattice rule $Q_{n,z}$ converges like $n^{-\alpha} ||f||_{d,\alpha,\gamma}$. Optimal. Bakhvalov. Matching upper and lower bounds (mod logs).

Function space

Korobov space* of dominating mixed smoothness $\alpha > 0$ ($\alpha > 1/2$):

$$\mathcal{H}_{d,\alpha,\gamma} := \left\{ f \in L_2([0,1]^d) : \|f\|_{d,\alpha,\gamma}^2 < \infty \right\},$$

with

$$\|f\|_{d,\alpha,\boldsymbol{\gamma}}^2 := \sum_{oldsymbol{h} \in \mathbb{Z}^d} r_{d,\alpha,\boldsymbol{\gamma}}^2(oldsymbol{h}) \, |\hat{f}(oldsymbol{h})|^2$$

and

$$r_{d,\alpha,\gamma}(\boldsymbol{h}) := \gamma_{\operatorname{supp}(\boldsymbol{h})}^{-1} \prod_{j \in \operatorname{supp}(\boldsymbol{h})} |h_j|^{\alpha}.$$

Weighted spaces: Sloan & Woźniakowski (2001), Novak & Woźniakowski (2008, 2010, 2012), . . .

*Korobov used ℓ_{∞} norm.

Example of a good lattice rule

Eg:
$$n = 21$$
 and $z = (1, 13)$: Fibonacci rule: $n = F_k$, $z = (1, F_{k-1})$.

Only d = 2, $d \ge 2$: Constructive methods for deterministic error:

Fast component-by-component (Nuyens & Cools 2006, ...)

 \rightarrow Fixed vector \mathbf{z} for a given n. (Or sequence of $n=p^m$, Cools, Kuo & Nuyens 2006).

Julia – Simple lattice rule example

Given n and $z \in \mathbb{Z}_n^d$:

$$oldsymbol{x}_k := rac{koldsymbol{z} m{\operatorname{mod}} \ n}{n}, \qquad Q_{n,oldsymbol{z}}(f) := rac{1}{n} \sum_{k \in \mathbb{Z}_n} f(oldsymbol{x}_k).$$

using Statistics: mean

mean(f, lattice_points([1, 8], 13))

Julia – Lattice sequence in base 2 (as a plain rule sequence)

```
# exew_base2_m20_a3_HKKN.txt from Magic Point Shop:
z = [1, 364981, 245389, 97823, 488939, 62609, 400749, 385317,
     21281, 223487] # 10 dimension with max 2^20 points
d = 2; m1 = 10; m2 = 20;
seq = ( lattice_points(z[1:d], 2^m) for m in m1:m2 )
# Such nice vectorisation...
Es = abs. (mean. (f, seq) .- 1) # true integral is 1
using Plots
ns = 2 .^ (m1:m2)
scatter(ns, Es, xscale=:log10, yscale=:log10)
plot!(ns, ns .^ -1, xscale=:log10, yscale=:log10)
```

Absolute error versus *n* for $d = 2 \rightarrow$ order 1 convergence

Open problem

The sequence in the previous plot is using a base-2 radical inverse function (van der Corput), e.g.

$$(1011)_2 \mapsto (0.1101)_2.$$

But yesterday I also showed the Korobov sequence trick...

• The Korobov sequence trick:

Given a good generating vector $\mathbf{z}^* = (z_0, z_1, \dots, z_d) \in \mathbb{Z}_n^{d+1}$ with $z_0 = 1$, use $\mathbf{z} = (z_1, \dots, z_d) \in \mathbb{Z}_n^d$ as a sequence, i.e., point by point, and get error n^{-1} .

Can we show $n^{-\alpha}$, when $n=p^m$, $m_1 \leq m \leq m_2$, for a lattice sequence using this same trick?

Absolute error versus *n* for $d = 10 \rightarrow \text{order } 1$ after bump

What do we see?

- The curse of dimensionality...
- Why does this happen?
- When does this happen?

Weighted function spaces

How to measure deterministic algorithms? (Intro to IBC)

• Worst-case error for approximating I(f) by $Q_n(f)$ for $f \in \mathcal{F}_d$:

$$e(Q_n, \mathcal{H}_{d,\alpha,\gamma}) := \sup_{\substack{f \in \mathcal{H}_{d,\alpha,\gamma} \\ \|f\|_{d,\alpha,\gamma} \leq 1}} |I(f) - Q_n(f)| \leq \text{upper bound for } Q_n.$$

• Best possible error using *n* function values (benchmark):

$$e(n,\mathcal{H}_{d,\alpha,\gamma}):=\inf_{Q_n:\{(w_k,x_k)\}_{k=1}^n}e(Q_n;\mathcal{H}_{d,\alpha,\gamma})~\geq~\text{lower bound for any}$$

= error of best algorithm using n function evaluations.

• Information complexity: the minimal number of function values needed to reach error at most ϵ :

$$n(\epsilon, \mathcal{H}_{d,\alpha,\gamma}) := \min \{ n : \exists Q_n \text{ for which } e(Q_n, \mathcal{H}_{d,\alpha,\gamma}) \le \epsilon \}$$

= number of function evaluations of best algorithm.

See a multitude of references, e.g., Novak (2016) or the Novak–Woźniakowski trilogy (2008,2010,2012), . . .

The curse of dimensionality & types of tractability

Tractability started by Woźniakowski (1994) and since then vastly expanded...

• The curse of dimensionality is defined as needing an exponential number of function values in d to reach an error $\epsilon \leq \epsilon_0$:

$$n(\epsilon, \mathcal{H}_{d,\alpha,\gamma}) \ge c (1+\gamma)^d$$
, for some $c, \gamma, \epsilon_0 > 0$.

A problem is called (weakly) tractable if

$$\lim_{\epsilon^{-1}+d\to\infty}\frac{\ln n(\epsilon,d)}{\epsilon^{-1}+d}=0,$$

and intractable otherwise.

• Different types, e.g., polynomial tractability

$$n(\epsilon, \mathcal{H}_{d,\alpha,\gamma}) \le c \epsilon^{-p} d^q$$
, for some $c, p, q \ge 0$.

See a multitude of references, in particular the Novak–Woźniakowski trilogy (2008,2010,2012), . . .

The curse might always be there...

Define \mathcal{F}_d with $f \in \mathcal{F}_d$ when

$$\|f\|_{\mathcal{F}_d} := \max_{\mathbf{x}, \mathbf{y} \in [0,1]^d} \frac{|f(\mathbf{x}) - f(\mathbf{y})|}{\|\mathbf{x} - \mathbf{y}\|_{\infty}} < \infty,$$

then (Maung Zho Newn and Sharygin, 1971)

$$e(n,\mathcal{F}_d) = \frac{d}{2d+2} n^{-1/d}.$$

This is for any (linear) algorithm!

See also Novak (2016).

The aim is to not just avoid the "curse by construction" (product rule $n=m^d$), but also

- rate independent of $d \Rightarrow$ "mixed dominating smoothness".
- constant $C_{d,\alpha,\gamma}$ independent of $d \Rightarrow$ "weighted spaces".

Tools / assumptions

Mixed dominating smoothness spaces:

Move from typical Sobolev norm with $\|D^{\tau}f\|_{L_2}$ bounded for $\tau_1 + \cdots + \tau_d \leq \alpha$, which gives $O(n^{-\alpha/d})$ to $\tau_1, \ldots, \tau_d \leq \alpha$ which gives $\sim O(n^{-\alpha})$. I.e., define $\|f\|_{d,\alpha}^2$ by

$$\sum_{\substack{\boldsymbol{\tau} \in \{0,\dots,\alpha\}^d \\ \|\boldsymbol{\tau}\|_{\infty} \leq \alpha}} \|D^{\boldsymbol{\tau}}f\|_{L_2}^2 \quad \text{versus} \quad \sum_{\substack{\boldsymbol{\tau} \in \{0,\dots,\alpha\}^d \\ \|\boldsymbol{\tau}\|_1 \leq \alpha}} \|D^{\boldsymbol{\tau}}f\|_{L_2}^2.$$

Dimension-independent error bounds:

Switch to weighted spaces: not all combinations of variables are as important. Denote the importance of the variables in $\mathfrak{u}\subseteq\{1,\ldots,d\}$ by $\gamma_{\mathfrak{u}}$. I.e., define $\|f\|_{d,\alpha,\gamma}^2$ by

$$\sum_{\substack{\tau \in \{0, \dots, \alpha\}^d \\ \|\tau\|_{\infty} \leq \alpha}} \gamma_{\mathfrak{u}}^{-1} \|D^{\tau} f\|_{L_2}^2.$$

Mixed spaces: Novak, Sickel, Temlyakov, Kühn, Ullrich, Ullrich, Potts, ... Weights: Hickernell (1998), Sloan & Woźniakowski (1998), Novak–Woźniakowski...

Again our favourite function space

Korobov space of dominating mixed smoothness $\alpha > 1/2$:

$$\mathcal{H}_{d,\alpha,\gamma} := \left\{ f \in L_2([0,1]^d) : \|f\|_{d,\alpha,\gamma}^2 < \infty
ight\},$$

with

$$\|f\|_{d,lpha,oldsymbol{\gamma}}^2:=\sum_{oldsymbol{h}\in\mathbb{Z}^s}r_{d,lpha,oldsymbol{\gamma}}^2(oldsymbol{h})\,|\hat{f}(oldsymbol{h})|^2$$

and

$$r_{d,\alpha,\gamma}^2(\pmb{h}) := \gamma_{\operatorname{supp}(\pmb{h})}^{-1} \prod_{j \in \operatorname{supp}(\pmb{h})} |h_j|^{2\alpha}.$$

For integer smoothness

When $\alpha \in \mathbb{N}$ then this norm can be written as the norm of a more usual unanchored periodic Sobolev space of dominating mixed smoothness α :

$$\begin{split} \|f\|_{d,\alpha,\gamma}^2 &:= \sum_{\pmb{h} \in \mathbb{Z}^d} r_{d,\alpha,\gamma}^2(\pmb{h}) \, |\hat{f}(\pmb{h})|^2 = \sum_{\pmb{h} \in \mathbb{Z}^d} \gamma_{\mathsf{supp}(\pmb{h})}^{-1} \, |\hat{f}(\pmb{h})|^2 \prod_{j \in \mathsf{supp}(\pmb{h})} |h_j|^{2\alpha} \\ &= \sum_{\substack{\nu \in \{0,\alpha\}^d \\ \mathfrak{u} := \mathsf{supp}(\nu)}} \frac{\gamma_{\mathfrak{u}}^{-1}}{\prod_{j \in \mathfrak{u}} (2\pi)^{2\nu_j}} \int_{[0,1]^{|\mathfrak{u}|}} \left| \underbrace{\int_{[0,1]^{d-|\mathfrak{u}|}} f^{(\nu)}(\pmb{y}_{-\mathfrak{u}}, \pmb{y}_{\mathfrak{u}}) \, \mathrm{d}\pmb{y}_{-\mathfrak{u}}}_{\text{``unanchored''}} \right|^2 \mathrm{d}\pmb{y}_{\mathfrak{u}} \\ &= \sum_{\substack{\nu \in \{0,\alpha\}^d \\ \mathfrak{u} := \mathsf{supp}(\nu)}} \gamma_{\mathfrak{u}}^{-1} \, \|P_{\mathfrak{u}} \, f^{(\nu)}\|_{L_2}^2. \end{split}$$

Usual error bounds

Example theorem.

For $f \in \mathcal{H}_{d,\alpha,\gamma}$ with $\alpha > 1/2$ and $n \in \mathbb{N}$ we can construct a generating vector $\mathbf{z} \in \mathbb{Z}_n^d$ such that

$$|I(f) - Q_{n,z}(f)| \le \frac{C_{d,\alpha,\gamma,\lambda}}{n^{\lambda}} \|f\|_{d,\alpha,\gamma} \quad \text{for all } \lambda \in [1/2,\alpha)$$

with

$$C_{d,\alpha,\gamma,\lambda}=...$$

With the right summability conditions on the weights this becomes a dimension-independent convergence bound for some $C'_{\alpha,\gamma,\lambda}$ with $C_{d,\alpha,\gamma,\lambda} < C'_{\alpha,\gamma,\lambda} < \infty$.

See a lot of CBC and fast CBC papers: Kuo, Sloan, Dick, N., Kritzer, Ebert, Wilkes, Schwab, \dots

Function approximation

Function approximation in the worst-case setting

• Consider the embedding of $f \in \mathcal{H}_{d,\alpha,\gamma}$ into L_2 :

$$\mathsf{APP}_d:\mathcal{H}_{d,\alpha,oldsymbol{\gamma}} o L_2([0,1]^d)$$

where APP_d f = f for all $f \in H_{d,\alpha,\gamma}$ and $\mathcal{H}_{d,\alpha,\gamma}$ continuously embedded in L_2 .

• Approximate APP_d by a deterministic linear algorithm $A_{d,n}$ which uses n function values (i.e., standard information Λ^{std}):

$$A_{d,n}(f; \{t_k, a_k\}_{k=1}^n)(x) = \sum_{k=1}^n f(t_k) a_k(x)$$

where the $\{t_1, \ldots, t_n\}$ are deterministic points (to be chosen), and the a_k are a set of functions (to be chosen).

• Use the worst-case error as quality measurement:

$$e^{\mathsf{APP}}(A_{d,n},\mathcal{H}_{d,\alpha,\gamma},L_2) := \sup_{\substack{f \in \mathcal{H}_{d,\alpha,\gamma} \\ \|f\|_{d,\alpha,\gamma} \leq 1}} \|f - A_{d,n}(f)\|_{L_2}.$$

Best L_2 approximation

Consider the compact operator $W_d = \mathsf{APP}_d^* \, \mathsf{APP}_d : H_d \to H_d$ with eigenpairs $(\lambda_{d,j}, \eta_{d,j})$, ordered by $\lambda_{d,1} \ge \lambda_{d,2} \ge \cdots$. The best L_2 approximation for Λ^{all} e.g., Novak & Woźniakwoski (2010)

$$A_{d,n}^*(f)(\mathbf{x}) := \sum_{j=1}^n \langle f, \eta_{d,j} \rangle_{d,\alpha,\gamma} \, \eta_{d,j}(\mathbf{x}),$$

with

$$e_{d,n}^{\mathsf{APP}}(A_{d,n}^*) = \sqrt{\lambda_{d,n+1}}.$$

Our space $\mathcal{H}_{d,\alpha,oldsymbol{\gamma}}$ is a reproducing kernel Hilbert space with kernel

$$K_{d,\alpha,\gamma}(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{h} \in \mathbb{Z}^d} \frac{\exp(2\pi\mathrm{i}\,\mathbf{h}\cdot\mathbf{x})}{r_{d,\alpha,\gamma}(\mathbf{h})} \frac{\exp(2\pi\mathrm{i}\,\mathbf{h}\cdot\mathbf{y})}{r_{d,\alpha,\gamma}(\mathbf{h})}.$$

Hence

$$\eta_{d,j}(\mathbf{x}) = \frac{\exp(2\pi \mathrm{i}\,\mathbf{h}_{d,j} \cdot \mathbf{x})}{r_{d,\alpha,\gamma}(\mathbf{h}_{d,j})}, \qquad \lambda_{d,j} = r_{d,\alpha,\gamma}^{-2}(\mathbf{h}_{d,j}) = \|\eta_{d,j}\|_{L_2}^2.$$

Approximate the best L_2 approximation

General idea:

• Enumerate Fourier indices in order of importance: for $M \ge 0$:

$$\mathcal{A}_d(M) := \{ \boldsymbol{h} \in \mathbb{Z}^d : r_{d,\alpha,\gamma}(\boldsymbol{h}) \leq M \}.$$

- Approximate \hat{f}_h by \hat{f}_h^a for all $h \in \mathcal{A}_d(M)$ using cubature.
- Approximate f by

$$A_{d,M}(f)(\mathbf{x}) = \sum_{\mathbf{h} \in \mathcal{A}_d(M)} \hat{f}_{\mathbf{h}}^{a} e^{2\pi i \, \mathbf{h} \cdot \mathbf{x}}.$$

With error

$$(f - A_{d,M}(f))(\mathbf{x}) = \sum_{\mathbf{h} \notin \mathcal{A}_d(M)} \hat{f}_{\mathbf{h}} e^{2\pi \mathrm{i} \, \mathbf{h} \cdot \mathbf{x}} + \sum_{\mathbf{h} \in \mathcal{A}_d(M)} (\hat{f}_{\mathbf{h}} - \hat{f}_{\mathbf{h}}^{a}) e^{2\pi \mathrm{i} \, \mathbf{h} \cdot \mathbf{x}}.$$

A lot of refs, e.g., Li & Hickernell (2003), Kuo, Sloan & Woźniakowski (2006 & 2008), Byrenheid, Kämmerer, Ullrich & Volkmer (2017), . . .

L₂ error of lattice algorithm

$$\begin{split} \|f - A_{d,n}(f; \mathbf{z})\|_{L_{2}}^{2} &= \sum_{\mathbf{h} \notin \mathcal{A}_{d}(M)} |\hat{f}_{\mathbf{h}}|^{2} + \sum_{\mathbf{h} \in \mathcal{A}_{d}(M)} |\hat{f}_{\mathbf{h}} - \hat{f}_{\mathbf{h}}^{a}|^{2} \\ &\leq \|f\|_{d,\alpha,\gamma}^{2} \left(\frac{1}{M} + \sum_{\mathbf{h} \in \mathcal{A}_{d}(M)} \sum_{\substack{0 \neq \ell \in \mathbb{Z}^{d} \\ \ell \cdot \mathbf{z} \equiv 0 \pmod{n}}} \frac{1}{r_{\alpha,\gamma}(\mathbf{h} + \ell)} \right) \\ &\leq \|f\|_{d,\alpha,\gamma}^{2} \left(\frac{1}{M} + \sum_{\mathbf{h} \in \mathbb{Z}^{d}} \frac{M}{r_{\alpha,\gamma}(\mathbf{h})} \sum_{\substack{0 \neq \ell \in \mathbb{Z}^{d} \\ \ell \cdot \mathbf{z} \equiv 0 \pmod{n}}} \frac{1}{r_{\alpha,\gamma}(\mathbf{h} + \ell)} \right) \end{split}$$

 \Rightarrow Three methods to find good generating vectors.

Three methods for good generating vectors for APP_d

1. Satisfy the reconstruction property $A_d(M)$:

$$\hat{f}_{h}^{a} = \hat{f}_{h} \quad \forall h \in \mathcal{A}_{d}(M) \quad \text{for all } f \text{ with finite support } \mathcal{A}_{d}(M)$$
 $\Leftrightarrow \quad \text{all } h \cdot z \mod n \text{ for } h \in \mathcal{A}_{d}(M) \text{ unique.}$

Kämmerer (2013,2014), Kämmerer, Potts, Volkmer (2015), Kuo, Migliorati, Nobile, N. (2021), ...

2. Minimize

$$E_d(\mathbf{z}) := \sum_{m{h} \in \mathcal{A}_d(M)} \sum_{\substack{0
eq \ell \in \mathbb{Z}^d \ \ell \cdot \mathbf{z} \equiv 0 \pmod{n}}} \frac{1}{r_{d,\alpha,\gamma}(m{h} + \ell)}.$$

Kuo, Sloan, Woźniakowski (2006,2008), Cools, Kuo, N., Suryanarayana (2016), ...

3. Minimize \rightarrow no dependence on $A_d(M)$

$$S_d(\mathbf{z}) := \sum_{\mathbf{h} \in \mathbb{Z}^d} \frac{1}{r_{d,\alpha,\gamma}(\mathbf{h})} \sum_{\substack{0
eq \ell \in \mathbb{Z}^d \\ \ell \cdot \mathbf{z} \equiv 0 \pmod{n}}} \frac{1}{r_{d,\alpha,\gamma}(\mathbf{h} + \ell)}.$$

Cools, Kuo, N., Sloan (2020,2021); product weights: Dick, Kritzer, Kuo, Sloan (2007) Composite *n* and embedded point sets: Kuo, Mo, Nuyens (2023)

Final Julia intermezzo

The final Julia intermezzo

First some things I didn't say yet:

- We have fast CBC construction algorithms to obtain good generating vectors for approximation (also sequences!).
- This only gives us half of the optimal rate.
- To improve this: Kämmerer, Potts, Bartel, Volkmer, Ullrich, ...
- Rank-1 lattice points in d dimensions gives you 1D FFT.
- Kernel interpolation completely avoids the index set!

Julia:

- Show some index sets.
- How they grow...
- Inner products on the index sets.

The end

The end

• Thanks for listening...