Lattice point sets and applications (part Il)
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The plan for today



The plan for today

Weighted function spaces and norms.

Results for numerical integration.

Function approximation using truncated Fourier series.

Maybe: Integration on RY.

e Again some Julia code to demonstrate things. ..



Small recap



Lattice rule = equal weight quadrature using lattice points

For f € Hy.q,~ approximate the d-dimensional integral

I(f) := /[071]d f(x)dx

by an n-point lattice rule with generating vector z € Z¢
1 zk mod n
sz(f) = ; Z f(n>
k€Zp

Worst-case error for f € Hy o for a given algorithm Q, (e.g. @nz):

e(anHd,a,'y) = sup |I(f) - Qn(f)‘
feEHd o~
[1flld,a~<1
~» For good lattice rule @, converges like n™[|f||g,a,-
Optimal. Bakhvalov. Matching upper and lower bounds (mod logs).



Function space

Korobov space* of dominating mixed smoothness & > 0 (a > 1/2):

Haary = { F € La(10,1%)  [F305 < 00}

with

2, 7 = Z da,'y( )‘f( )

hezd

and

raar(B) = Voroy LI 10
Jjé€supp(h)

Weighted spaces: Sloan & Wozniakowski (2001),
Novak & Wozniakowski (2008, 2010, 2012), ...

*Korobov used /o, norm.



Example of a good lattice rule

Eg: n =121 and z = (1,13): Fibonacci rule: n = Fy, z = (1, Fx_1).
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Only d = 2, d > 2: Constructive methods for deterministic error:
Fast component-by-component (Nuyens & Cools 2006, ... )
— Fixed vector z for a given n.

(Or sequence of n = p™, Cools, Kuo & Nuyens 2006).



Julia — Simple lattice rule example

Given n and z € ZJ:

kz mod n 1
=y Qna(f) = > f(xi).

n
k€Zn

lattice_points(z, n) = ( ( (k * z) .% n) ./ n for k in O:n-1 )
f=x ->prod(1 .+ (x .- 1/2))
using Statistics: mean

mean(f, lattice_points([1, 8], 13))



Julia — Lattice sequence in base 2 (as a plain rule sequence)

# exew_base2_m20_a3_HKKN.txt from Magic Point Shop:
z = [1, 364981, 245389, 97823, 488939, 62609, 400749, 385317,
21281, 223487] # 10 dimension with max 2720 points

d=2; ml1=10; m2 = 20;
seq = ( lattice_points(z[1:d], 2"m) for m in ml:m2 )

# Such nice vectorisation...
Es = abs.(mean.(f, seq) .- 1) # true integral is 1

using Plots

ns = 2 .~ (ml:m2)

scatter(ns, Es, xscale=:logl0, yscale=:1ogl0)
plot!(ns, ns .~ -1, xscale=:logl0O, yscale=:1logl0)



Absolute error versus n for d =2 — order 1 convergence
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Open problem

The sequence in the previous plot is using a base-2 radical inverse
function (van der Corput), e.g.

(1011)3 — (0.1101),.

But yesterday | also showed the Korobov sequence trick. . .

e The Korobov sequence trick:
Given a good generating vector z* = (z9, z1, . . ., zq) € Z3+1
with zg =1, use z = (z1,...,2z4) € 79 as a sequence, i.e.,
point by point, and get error n1.
Can we show n=%, when n = p™, m; < m < my, for a lattice

sequence using this same trick?



Absolute error versus n for d = 10 — order 1 after bump
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What do we see?

e The curse of dimensionality. . .
e Why does this happen?
e When does this happen?

11



Weighted function spaces




How to measure deterministic algorithms? (Intro to IBC)

e Worst-case error for approximating /(f) by Q,(f) for f € Fy:
e(Qn Hd,any) = sup |I(f) — Qn(f)] < upper bound for Q.
f

S d,o,y
Iflld,a,~<1

e Best possible error using n function values (benchmark):

i i) (= inf e(QnHd,a~) > lower bound for any
Qn:{ (Wi xk) ey

= error of best algorithm using n function evaluations.

e Information complexity: the minimal number of function values
needed to reach error at most e€:

n(e, Ha a~) := min{n: 3Q, for which e(Qn, Hgn~) < €}
= number of function evaluations of best algorithm.

See a multitude of references, e.g., Novak (2016) or the
Novak-Wozniakowski trilogy (2008,2010,2012), . ..
12



The curse of dimensionality & types of tractability

Tractability started by Wozniakowski (1994) and since then vastly
expanded. . .

e The curse of dimensionality is defined as needing an exponential
number of function values in d to reach an error € < €p:

n(e, Ha.an) > c(1+7), for some ¢, v, ¢ > 0.

e A problem is called (weakly) tractable if
| d
im 69 g
e l+d—oo €1+ d
and intractable otherwise.

e Different types, e.g., polynomial tractability

n(e, Haa~) < ce Pdi, for some ¢, p,q > 0.

See a multitude of references, in particular the Novak—Wozniakowski trilogy
(2008,2010,2012), ...
13



The curse might always be there. ..

Define Fy4 with f € 4 when

f(x) -
Il = max OO
vae[ov]']d HX - yHOO

then (Maung Zho Newn and Sharygin, 1971)

d _
e(n,]—"d) = 72(/—!—2 n l/d.

This is for any (linear) algorithm!
See also Novak (2016).

The aim is to not just avoid the “curse by construction” (product
rule n = m?), but also

e rate independent of d = “mixed dominating smoothness”.

e constant Cy, ~ independent of d = “weighted spaces”.
14



Tools / assumptions

e Mixed dominating smoothness spaces:
Move from typical Sobolev norm with ||D7f||,, bounded for
T+ -4 74 < a, which gives O(n= ) to ,..., 74 <
which gives ~ O(n™%). l.e., define ||f\|f,7(l by

> IDTF|Z, versus > D7,

7€{0,...,a}9 7€{0,...,a}d
7 lloc <a [Tl <er

e Dimension-independent error bounds:
Switch to weighted spaces: not all combinations of variables are
as important. Denote the importance of the variables in
: 2
uC{l,...,d} by w. le., define [[f][7 , . by

> %D,

7€{0,...,a}d
(17 loo <cx
Mixed spaces: Novak, Sickel, Temlyakov, Kiihn, Ullrich, Ullrich, Potts, ...

Weights: Hickernell (1998), Sloan & Wozniakowski (1998), Novak—Wozniakowski. . . 15



Again our favourite function space

Korobov space of dominating mixed smoothness o > 1/2:

Hasary = { F € (10,1 [F305 < 20},

with

”fH?I,a,‘y = Z du,’y( )‘f( )’

heZs

and

2 oy =1 20
rd,a,’y(h) T ’Ysupp(h) H |hJ’ :
jéesupp(h)
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For integer smoothness

When o € N then this norm can be written as the norm of a more

usual unanchored periodic Sobolev space of dominating mixed
smoothness «:

1l oy = D GanyMFB)P =D vitumlFOP T 1mPe

hezd hezd Jj€supp(h)

T
- I (2m)2% —u? u d —u
Ve%:a}d 1_11611(27r /0 1] lul ‘/[0 1]9- \u\ yu)dy

u:=supp(v)

= > WP,

ve{0,a}?
u:=supp(v)

“unanchored”
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Usual error bounds

Example theorem.
For f € Hy,a~ with @ > 1/2 and n € N we can construct a
generating vector z € Z9 such that

Cd o
1(F) = Qna(Fl < 2522 fllaqsy  forall A€ [1/2,a)

with
Cd7a777>\ = A

With the right summability conditions on the weights this becomes a
dimension-independent convergence bound for some C/, N with
Cd@v")’v)\ <q a,y,A < 00.

See a lot of CBC and fast CBC papers: Kuo, Sloan, Dick, N., Kritzer, Ebert,

Wilkes, Schwab, ...
18



Function approximation




Function approximation in the worst-case setting

o Consider the embedding of f € Hg «~ into Lo:
APP, : Hy o~ — L2([0,1]%)

where APPy f = f for all f € Hy o~
and Hg4 o~ continuously embedded in L.

e Approximate APP4 by a deterministic linear algorithm Ay
which uses n function values (i.e., standard information Astd):

Adn(f {tk,ak}k 1 Zf tk ak

where the {t1,...,t,} are determmlstlc points (to be chosen),
and the a, are a set of functions (to be chosen).
e Use the worst-case error as quality measurement:
APP
€ (Ad,naHd,a,’w L2) = sup Hf - Ad,n(f)HLz'

feHd,a.'y

11,0y <1 .



Best L, approximation

Consider the compact operator Wy = APP; APP, : Hy — Hy with
eigenpairs (\gj,7d,j), ordered by A\y1 > Ag2 > ---. The best L

approximation for A2l ¢ Novak & Wozniakwoski (2010)

n

5.(F)(X) = Y (144} d .y 119 (X);

j=1

eg,Fr)rP( >|c;',n) =V )‘d,n+1~

Our space Hg o~ is a reproducing kernel Hilbert space with kernel

Kd,a;y(x7y) = Z

hezd

with

exp(27ih - x) exp(27ih - y)
raar(h)  raay(h)

Hence

exp(2mihy j - x) 5 2
i (X) = rdan(hdj) Adj = I 0~ (ha ) = 1142,

20



Approximate the best L, approximation

General idea:
e Enumerate Fourier indices in order of importance: for M > 0:

Ag(M) :={h € Z9 : 1y o~ (h) < M}.

e Approximate f, by f,‘f for all h € Ay(M) using cubature.
e Approximate f by

Ad I\/l Z fa 27i h- X
hE.Ad )
e With error
(f AdM Z fe27-|hx+ Z 27r|hx.
hQAd ) hEAd )

A lot of refs, e.g., Li & Hickernell (2003), Kuo, Sloan & Wozniakowski (2006 & 2008), Byrenheid,
Kammerer, Ullrich & Volkmer (2017), ...
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L, error of lattice algorithm

If = Adn(f; 2)IE,

hgAq(M)

IN

2
”fHd,a,'y

2
< HfHd,a,‘y

L
M

=

heAq(M)

+

+

he Ay(M)  o#ecz?
0 (mod n)

L-z=

M

hezd r“~’Y(h)

Z |l + Z |y — 21

0#£2ez?
£-z=0 (mod n)

= Three methods to find good generating vectors.

1
ra~(h+£)

1

ra~(h+£)

22



Three methods for good generating vectors for APP,

1. Satisfy the reconstruction property Aqy(M):
f2=f, VYhe Ag(M) for all f with finite support Ag(M)
& all h-z mod n for h € Ay(M) unique.

Ka@mmerer (2013,2014), Kdmmerer, Potts, Volkmer (2015), Kuo, Migliorati, Nobile, N. (2021), ...

2. Minimize

1
Ey(2) := Z Z 7fd,a,—y(h+£)‘

he A (M) 0#eczd
£-z=0 (mod n)

Kuo, Sloan, Wozniakowski (2006,2008), Cools, Kuo, N., Suryanarayana (2016), ...

3. Minimize — no dependence on A,(M)
1 1
R S i .
hezd fd,0.(h) 0s£eezd fd,a(h + £)
£-z=0 (mod n)

Cools, Kuo, N., Sloan (2020,2021); product weights: Dick, Kritzer, Kuo, Sloan (2007)
Composite n and embedded point sets: Kuo, Mo, Nuyens (2023) 23



Final Julia intermezzo




The final Julia intermezzo

First some things | didn't say yet:

e We have fast CBC construction algorithms to obtain good

generating vectors for approximation (also sequences!).

This only gives us half of the optimal rate.

e To improve this: Kammerer, Potts, Bartel, Volkmer, Ullrich, ...

Rank-1 lattice points in d dimensions gives you 1D FFT.

e Kernel interpolation completely avoids the index set!
Julia:

e Show some index sets.
e How they grow. ..
e Inner products on the index sets.

24



The end




e Thanks for listening. . .
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