Lattice point sets and applications (part I)

Dirk Nuyens — NUMA, KU Leuven, Belgium
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The plan for today



The plan for today

e A light introduction to “lattice points” & “lattice rules”.
e Usage for numerical integration of “periodic” functions.
e Analysis of the error.

e Some words on function spaces and the worst-case error.

Some Julia code to demonstrate things. ..



Lattice “points” or lattice “rules’?



Lattice rule = equal weight cubature using lattice points

For f € H,, approximate the d-dimensional integral

by an n-point lattice rule with generating vector z € Z9
zk mod n
Qualf) = 7 3 F( 220,
keZ

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn z):

edet(QmHa) ‘= sup “(f) - Qn(f)‘
fEH
flla<1
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edet(QmHa) ‘= sup “(f) - Qn(f)‘
fEH
flla<1



Lattice rule = equal weight quadrature using lattice points

For f € H,, approximate the d-dimensional integral

I(f) := /[071]d f(x)dx

by an n-point lattice rule with generating vector z € Z9
zk mod n
QnelF) == Y f( )
kEZ

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn2):

% (Qn, Ha) = sup [I(f) — Qu(f)|-
fEH
Iflla<1
~~ For good lattice rule Q, , converges like =% ||f]|,.

Optimal. Bakhvalov. Matching upper and lower bounds (mod logs).



“Monte Carlo type” methods: 257 | f(xx)

What kind of cubature/quadrature method to use for d large?

e A product of classical quadrature rules? (Product of weights!)
— n= m“ = The curse “by construction”!

e The plain Monte Carlo method: x, ~ U[0,1)9.
— Free to choose n.

e Quasi-Monte Carlo methods: using some algebraic structure.
— Free to choose n.
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n=md n free n free
error = O(n="/) std = O(n~1/?) error = O(n71), ...



Function space

Korobov space of dominating mixed smoothness o > 0:

hczd

1, o= {f e La([0,1]%) : |IF]2 := S r2(h) [ (h)? < 00} :

with
ra(h) == ’Ys_u][:-)p(h) H ||

j€supp(h)

Weighted spaces: Sloan & Wozniakowski (2001),
Novak & Wozniakowski (2008, 2010, 2012), ...

More on norms tomorrow. . .



Example of a good lattice rule

Eg: n =121 and z = (1,13): Fibonacci rule: n = Fy, z = (1, Fx_1).
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Only d = 2, d > 2: Constructive methods for deterministic error:
Fast component-by-component (Nuyens & Cools 2006, ... )
— Fixed vector z for a given n.

(Or sequence of n = p™, Cools, Kuo & Nuyens 2006).



What can we do with lattice points???

e INT: The integration problem: approximate

I(f) = /[071]‘1 f(x)dx.

APP: The function approximation problem: find an

approximation for an f € H minimizing some norm.

Collocation methods.

Least-squares methods.

Note: If you are familiar with information based complexity (IBC):
Since we use the lattice points as sample points this is the setting of
standard information, sometimes called AStd,

Lots of work: Korobov, Sloan, Temlyakov, Niederreiter, a lot of
people in this audience. ..



First demo




Julia break. ..

A (rank 1) lattice point generator (as in Generator).

The “order” of the points.

Rotated grids or grids?

Use for numerical integration.

Good and bad rules?



Error for an integrand;
Worst-case error for function space




Error for an integrand using lattice rule approximation

For f € Hq, with a > 1/2, or actually,
for f with abs. conv. Fourier series, “Wiener algebra”,

f(x)= Z f(h)e2mihx, f(h) ;—/ f(x)e 2mihx gy
hez? [0,1]¢



Error for an integrand using lattice rule approximation

For f € Hq, with a > 1/2, or actually,
for f with abs. conv. Fourier series, “Wiener algebra”,

Fx)= 3 F(h)emhx P(h) = /[0 . Fx) e 20 dx.

hezd
we have
1 zk mod n 2
E(f):= - fl ——— | — f(x)dx = f(h
()= T A(ZEE0) - [ o= Y )
kEZn i 0§£h€Zd
h-z=0 (mod n)

by the character sum for Z,,, we have fora=z-h € 7Z,

% Z exp(2mik a/n) = 1{a=0 (mod n)}.
kE€Zn



(Show other slides with duals. . .)
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Worst-case error

Remember the definition:

Worst-case error for f € H, for a given algorithm Q, (e.g. Qn z):

edet(QmHa) ‘= sup “(f) - Qn(f)‘
feHa
Iflla<1

11



Spaces based on series representations & Koksma—Hlawka

Assume Lp-ONB {¢p}h, do =1, Qn(1) =1, and abs. summ.

) = S Hh)onta),  with F(h) = /[0,1]d £(x) dn(x) dx,

12



Spaces based on series representations & Koksma—Hlawka

Assume Lp-ONB {¢p}h, do =1, Qn(1) =1, and abs. summ.

:Zh:f(h) on(x),  with F(h):= /[0,1]d F(x) Pn(x) dx,

then, for ry ~(h) > 0 an “increasing” function,

|1(f) )l =D F(h) Qu(6h) ra(h) ry 3 (h)
h#0
1/q
< (Z‘f(h)’prgﬁ(h)> (ZQn(dm )N ra Al ))
h h#£0

norm X worst-case error® .

(See next slide.)
12



Worst-case error (continued. . .)

|1(f) Al =D f(h) Qn(¢h) ra~(h) ri 5 (h)
h+0
) 1/p 1/q
< (Z f(h)‘ rg,q(h)> (ZQn(sbh)"ra,i(h))
h h+#0

norm X worst-case error” .

For 1 < p < 0o and compatible choices of ¢p, Q, and r, we can
find a “worst-case” representer {(x) for which

|1Qn(€) = 1(€)]™7 = e(Qn, Fa), (*)

independent of the particular Q,, e.g., Fourier series and lattice
rules, Walsh series and digital nets, see Nuyens (2014) and

Hickernell (1998a,b). .



Reproducing kernel Hilbert spaces, p =g =2

Given a one-dimensional reproducing kernel K(x,y) = K(y, x).
Suppose H(K) is separable: H(K) = span{¢n}s and ¢g = 1.
Determine the eigenvalues and eigenfunctions, and assume A\g = 1,

¢(x) K(x,y) dx = X g(y).

[0.1]

Then

K(x,y) Z

h h h

(x) on(y)
Zh: 9nlle. dnlle,’

the ¢, are Lp-orthogonal, with ||¢x|l, = VAp and |||l = 1, with

(8w =S MAMER,  IFIB = [F)[
h h

14



Multivariate weighted reproducing kernel Hilbert space

Use the one-dimensional space as building block for d dimensions by
taking weighted tensor products (tensor product basis)'

- . bn;(%5) n(y;)
K(x,y) Z 71tHK J7yJ Z%‘(h)g \/rhj \/)\7,7]

uC{1,..,d}  Jj€u ]

= ra2(h) ¢n(x) En(y),
h
W|th (You could now interpret « as the decay of the eigenvalues.)
d
h) = vun) H A;jl = Yu(h) H A;jl,
JEU =0

and u(h) = {hj : hj # 0} = supp(h). Now, with vy =1, Qs(1) =1,

ez(Qn;H) = =il ¢ 2 Wi Wy K(Xk,yg)-
k=1
15



For a shift-invariant space and lattice rule

For a shift-invariant space we have
K(va) = K(X _y,O)
and for a lattice rule we have

Xk = X/ = Xk—k/ mod n>
all on the torus [0,1).

Hence:

e*(QnziH)=—1+ Z wie we K(Xk, ¥¢)
k=1

n n
1 1
= —1l I E ; E ;K(kaémod n,O)
A=l (=il

1 n
= —1+4=> " K(xx,0).
= 16



Fast component-by-component
constructions




Construction of lattice rules and polynomial lattice rules

Point sets constructed for
weighted spaces using fast
component-by-component
constructions using number
theoretic transforms.

See https://www.cs.kuleuven.be/~dirkn/qmcdpde/ and
https://www.cs.kuleuven.be/~dirkn/fast-cbc/.

See, e.g., N. & Cools (2006a,2006b), Cools, Kuo, & N. (2006), Dick, Kuo, Le Gia, N.

& Schwab (2014), N. (2014), Kuo & N. (2016), ...

Variations and speedups by: Gantner, Kritzer, Laimer, Leobacher, Pillichshammer,

Schwab, ... New methods: Ebert, Kritzer, N., Osisiogu (2021), Kuo, N., Wilkes (2023),

N., Wilkes (2023), ... 17


https://www.cs.kuleuven.be/~dirkn/qmc4pde/
https://www.cs.kuleuven.be/~dirkn/fast-cbc/

Point generators

e Matlab/Octave: procedural generators like Matlab's rand:
e latticeseq_b2.m: radical inverse lattice sequence generator,
e digitalseq_b2g.m: gray coded radical inverse digital
sequence generator (incl. higher-order, max 53 bit).
e Python: iterator classes, which can be used as standalone point
generators from the command line (__main__):
e latticeseq_b2.py: iterator based (__iter__), set_state
for parallel computing,
e digitalseq_b2g.py: ditto, arbitrary precision using mpmath if
needed.
e C++: header file based implementation with driver program for
the command line:
e latticeseq_b2. (hl|cpp): complies to ForwardIterator
concept, set_state for parallel computing,

e digitalseq_b2g. (hlcpp): ditto, max 64 bit.
18



Welcome to “The Magic Point Shop!”

Different flavours of quasi-Monte Carlo points to choose:

e Lattice rules.
e Lattice sequences.
e Polynomial lattice rules.

Interlaced Sobol" sequences (higher-order).

Interlaced polynomial lattice rules (higher-order).

And code (C++ and Matlab) to use them. ..

E e E Ee o =
S A b @@ v S o]

Subsidiaries: QMC4PDE: construct points for parametrised PDEs.
19



Second demo




Julia break. ..

e The van der Corput sequence for d = 1.
e The Korobov trick.

e Estimating the error by use of standard error. ..

20



The end for today




The end for today from me

e Thanks for listening. ..

21



The end for today from me

e Thanks for listening. ..

e Please ask questions. ..
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The end for today from me

e Thanks for listening. ..
e Please ask questions. ..

e Now or later. ..
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The end for today from me

e Thanks for listening. ..
e Please ask questions. ..

e Now or later. ..

Tomorrow more advanced things: weighted function spaces, function approximation, ...
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