
Lattice point sets and applications (part I)

Dirk Nuyens — NUMA, KU Leuven, Belgium

Workshop and Summer School on Applied Analysis 2023
TU Chemnitz
Chemnitz, Germany
September 2023

1

The plan for today

The plan for today

• A light introduction to “lattice points” & “lattice rules”.

• Usage for numerical integration of “periodic” functions.

• Analysis of the error.

• Some words on function spaces and the worst-case error.

• Some Julia code to demonstrate things. . .

2

Lattice “points” or lattice “rules”?

Lattice rule = equal weight cubature using lattice points

For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

3

Lattice rule = equal weight quadrature using lattice points

For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

3

Lattice rule = equal weight quadrature using lattice points

For f ∈ Hα approximate the d-dimensional integral

I (f) :=

∫
[0,1]d

f (x) dx

by an n-point lattice rule with generating vector z ∈ Zd
n

Qn,z(f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
.

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

⇝ For good lattice rule Qn,z converges like n−α ∥f ∥α.
Optimal. Bakhvalov. Matching upper and lower bounds (mod logs).

3

“Monte Carlo type” methods: 1
n

∑n
k=1 f (xk)

What kind of cubature/quadrature method to use for d large?

• A product of classical quadrature rules? (Product of weights!)
→ n = md ⇒ The curse “by construction”!

• The plain Monte Carlo method: xk ∼ U[0, 1)d .
→ Free to choose n.

• Quasi-Monte Carlo methods: using some algebraic structure.
→ Free to choose n.

grid MC QMC

n = md n free n free
error = O(n−r/d) std = O(n−1/2) error = O(n−1), . . .

4

Function space

Korobov space of dominating mixed smoothness α > 0:

Hα :=

f ∈ L2([0, 1]d) : ∥f ∥2
α :=

∑
h∈Zd

r2
α(h) |f̂ (h)|2 < ∞

 ,

with
rα(h) := γ−1

supp(h)

∏
j∈supp(h)

|hj |α.

Weighted spaces: Sloan & Woźniakowski (2001),
Novak & Woźniakowski (2008, 2010, 2012), . . .

More on norms tomorrow. . .

5

Example of a good lattice rule

Eg: n = 21 and z = (1, 13): Fibonacci rule: n = Fk , z = (1,Fk−1).

Only d = 2, d ≥ 2: Constructive methods for deterministic error:
Fast component-by-component (Nuyens & Cools 2006, . . .)
→ Fixed vector z for a given n.

(Or sequence of n = pm, Cools, Kuo & Nuyens 2006).
6

What can we do with lattice points???

• INT: The integration problem: approximate

I (f) :=

∫
[0,1]d

f (x) dx .

• APP: The function approximation problem: find an
approximation for an f ∈ H minimizing some norm.

• Collocation methods.
• Least-squares methods.
• . . .

Note: If you are familiar with information based complexity (IBC):
Since we use the lattice points as sample points this is the setting of
standard information, sometimes called Λstd.

Lots of work: Korobov, Sloan, Temlyakov, Niederreiter, a lot of
people in this audience. . .

7

First demo

Julia break. . .

• A (rank 1) lattice point generator (as in Generator).

• The “order” of the points.

• Rotated grids or grids?

• Use for numerical integration.

• Good and bad rules?

8

Error for an integrand;
Worst-case error for function space

Error for an integrand using lattice rule approximation

For f ∈ Hα, with α > 1/2, or actually,
for f with abs. conv. Fourier series, “Wiener algebra”,

f (x) =
∑
h∈Zd

f̂ (h) e2πi h·x , f̂ (h) :=
∫
[0,1]d

f (x) e−2πi h·x dx ,

we have

E (f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
−
∫
[0,1]d

f (x) dx =
∑

0 ̸=h∈Zd

h·z≡0 (mod n)

f̂ (h),

by the character sum for Zn, we have for a = z · h ∈ Z,

1
n

∑
k∈Zn

exp(2πi k a/n) = 1{a ≡ 0 (mod n)}.

9

Error for an integrand using lattice rule approximation

For f ∈ Hα, with α > 1/2, or actually,
for f with abs. conv. Fourier series, “Wiener algebra”,

f (x) =
∑
h∈Zd

f̂ (h) e2πi h·x , f̂ (h) :=
∫
[0,1]d

f (x) e−2πi h·x dx ,

we have

E (f) :=
1
n

∑
k∈Zn

f

(
zk mod n

n

)
−
∫
[0,1]d

f (x) dx =
∑

0 ̸=h∈Zd

h·z≡0 (mod n)

f̂ (h),

by the character sum for Zn, we have for a = z · h ∈ Z,

1
n

∑
k∈Zn

exp(2πi k a/n) = 1{a ≡ 0 (mod n)}.

9

(Show other slides with duals. . .)

10

Worst-case error

Remember the definition:

Worst-case error for f ∈ Hα for a given algorithm Qn (e.g. Qn,z):

edet(Qn,Hα) := sup
f ∈Hα
∥f ∥α≤1

|I (f)− Qn(f)|.

11

Spaces based on series representations & Koksma–Hlawka

Assume L2-ONB {ϕh}h, ϕ0 = 1, Qn(1) = 1, and abs. summ.

f (x) =
∑
h

f̂ (h)ϕh(x), with f̂ (h) :=
∫
[0,1]d

f (x)ϕh(x) dx ,

then, for rα,γ(h) > 0 an “increasing” function,

|I (f)− Qn(f)| =

∣∣∣∣∣∣
∑
h ̸=0

f̂ (h)Qn(ϕh) rα,γ(h) r−1
α,γ(h)

∣∣∣∣∣∣
≤

(∑
h

∣∣∣f̂ (h)∣∣∣p rpα,γ(h)
)1/p

∑
h ̸=0

|Qn(ϕh)|q r−q
α,γ(h)

1/q

norm × worst-case error∗ .

(See next slide.)

12

Spaces based on series representations & Koksma–Hlawka

Assume L2-ONB {ϕh}h, ϕ0 = 1, Qn(1) = 1, and abs. summ.

f (x) =
∑
h

f̂ (h)ϕh(x), with f̂ (h) :=
∫
[0,1]d

f (x)ϕh(x) dx ,

then, for rα,γ(h) > 0 an “increasing” function,

|I (f)− Qn(f)| =

∣∣∣∣∣∣
∑
h ̸=0

f̂ (h)Qn(ϕh) rα,γ(h) r−1
α,γ(h)

∣∣∣∣∣∣
≤

(∑
h

∣∣∣f̂ (h)∣∣∣p rpα,γ(h)
)1/p

∑
h ̸=0

|Qn(ϕh)|q r−q
α,γ(h)

1/q

norm × worst-case error∗ .

(See next slide.)
12

Worst-case error (continued. . .)

|I (f)− Qn(f)| =

∣∣∣∣∣∣
∑
h ̸=0

f̂ (h)Qn(ϕh) rα,γ(h) r−1
α,γ(h)

∣∣∣∣∣∣
≤

(∑
h

∣∣∣f̂ (h)∣∣∣p rpα,γ(h)
)1/p

∑
h ̸=0

|Qn(ϕh)|q r−q
α,γ(h)

1/q

norm × worst-case error∗ .

For 1 < p ≤ ∞ and compatible choices of ϕh, Qn and rα,γ we can
find a “worst-case” representer ξ(x) for which

|Qn(ξ)− I (ξ)|1/q = e(Qn,Fd), (*)

independent of the particular Qn, e.g., Fourier series and lattice
rules, Walsh series and digital nets, see Nuyens (2014) and
Hickernell (1998a,b). 13

Reproducing kernel Hilbert spaces, p = q = 2

Given a one-dimensional reproducing kernel K (x , y) = K (y , x).
Suppose H(K) is separable: H(K) = span{ϕh}h and ϕ0 = 1.
Determine the eigenvalues and eigenfunctions, and assume λ0 = 1,∫

[0,1]
ϕ(x)K (x , y) dx = λϕ(y).

Then

K (x , y) =
∑
h

ϕh(x)√
λh

ϕh(y)√
λh

=
∑
h

ϕh(x)

∥ϕh∥L2

ϕh(y)

∥ϕh∥L2

,

the ϕh are L2-orthogonal, with ∥ϕh∥L2 =
√
λh and ∥ϕh∥H = 1, with

⟨f , g⟩H =
∑
h

λh f̂ (h) ĝ(h), ∥f ∥2
H =

∑
h

λh

∣∣∣f̂ (h)∣∣∣2 .
14

Multivariate weighted reproducing kernel Hilbert space

Use the one-dimensional space as building block for d dimensions by
taking weighted tensor products (tensor product basis):

K (x , y) =
∑

u⊆{1,...,d}

γu
∏
j∈u

K (xj , yj) =
∑
h

γu(h)

d∏
j=1

ϕhj (xj)√
λhj

ϕhj (yj)√
λhj

=
∑
h

r−2
α,γ(h)ϕh(x)ϕh(y),

with (You could now interpret α as the decay of the eigenvalues.)

r−2
α,γ(h) = γu(h)

∏
j∈u

λ−1
hj

= γu(h)

d∏
j=1

λ−1
hj

,

and u(h) = {hj : hj ̸= 0} = supp(h). Now, with γ∅ = 1, Qn(1) = 1,

e2(Qn;H) = −1 +
n∑

k,ℓ=1

wk wℓ K (xk , y ℓ).

15

For a shift-invariant space and lattice rule

For a shift-invariant space we have

K (x , y) = K (x − y , 0)

and for a lattice rule we have

xk − xk ′ = xk−k ′ mod n,

all on the torus [0, 1)d .

Hence:

e2(Qn,z ;H) = −1 +
n∑

k,ℓ=1

wk wℓ K (xk , y ℓ)

= −1 +
n∑

ℓ=1

1
n

n∑
k=1

1
n
K (xk−ℓ mod n, 0)

= −1 +
1
n

n∑
k=1

K (xk , 0).

16

Fast component-by-component
constructions

Construction of lattice rules and polynomial lattice rules

Point sets constructed for
weighted spaces using fast
component-by-component
constructions using number
theoretic transforms.

See https://www.cs.kuleuven.be/~dirkn/qmc4pde/ and
https://www.cs.kuleuven.be/~dirkn/fast-cbc/.

See, e.g., N. & Cools (2006a,2006b), Cools, Kuo, & N. (2006), Dick, Kuo, Le Gia, N.
& Schwab (2014), N. (2014), Kuo & N. (2016), . . .
Variations and speedups by: Gantner, Kritzer, Laimer, Leobacher, Pillichshammer,
Schwab, . . . New methods: Ebert, Kritzer, N., Osisiogu (2021), Kuo, N., Wilkes (2023),
N., Wilkes (2023), . . . 17

https://www.cs.kuleuven.be/~dirkn/qmc4pde/
https://www.cs.kuleuven.be/~dirkn/fast-cbc/

Point generators

• Matlab/Octave: procedural generators like Matlab’s rand:
• latticeseq_b2.m: radical inverse lattice sequence generator,
• digitalseq_b2g.m: gray coded radical inverse digital

sequence generator (incl. higher-order, max 53 bit).

• Python: iterator classes, which can be used as standalone point
generators from the command line (__main__):

• latticeseq_b2.py: iterator based (__iter__), set_state
for parallel computing,

• digitalseq_b2g.py: ditto, arbitrary precision using mpmath if
needed.

• C++: header file based implementation with driver program for
the command line:

• latticeseq_b2.(h|cpp): complies to ForwardIterator
concept, set_state for parallel computing,

• digitalseq_b2g.(h|cpp): ditto, max 64 bit.
18

Welcome to “The Magic Point Shop!”

Different flavours of quasi-Monte Carlo points to choose:

• Lattice rules.
• Lattice sequences.
• Polynomial lattice rules.
• Interlaced Sobol’ sequences (higher-order).
• Interlaced polynomial lattice rules (higher-order).

And code (C++ and Matlab) to use them. . .

Subsidiaries: QMC4PDE: construct points for parametrised PDEs.
19

Second demo

Julia break. . .

• The van der Corput sequence for d = 1.

• The Korobov trick.

• Estimating the error by use of standard error. . .

20

The end for today

The end for today from me

• Thanks for listening. . .

• Please ask questions. . .

• Now or later. . .

Tomorrow more advanced things: weighted function spaces, function approximation, . . .

21

The end for today from me

• Thanks for listening. . .

• Please ask questions. . .

• Now or later. . .

Tomorrow more advanced things: weighted function spaces, function approximation, . . .

21

The end for today from me

• Thanks for listening. . .

• Please ask questions. . .

• Now or later. . .

Tomorrow more advanced things: weighted function spaces, function approximation, . . .

21

The end for today from me

• Thanks for listening. . .

• Please ask questions. . .

• Now or later. . .

Tomorrow more advanced things: weighted function spaces, function approximation, . . .

21

	The plan for today
	Lattice ``points'' or lattice ``rules''?
	First demo
	Error for an integrand; Worst-case error for function space
	Fast component-by-component constructions
	Sample point generators
	The point-selling business

	Second demo
	The end for today

