Lattice point sets and applications (part I)

Workshop and Summer School on Applied Analysis 2023 TU Chemnitz Chemnitz, Germany September 2023

[The plan for today](#page-1-0)

- A light introduction to "lattice points" & "lattice rules".
- Usage for numerical integration of "periodic" functions.
- Analysis of the error.
- Some words on function spaces and the worst-case error.
- Some Julia code to demonstrate things. . .

[Lattice "points" or lattice "rules"?](#page-3-0)

Lattice rule $=$ equal weight cubature using lattice points

For $f \in \mathcal{H}_{\alpha}$ approximate the *d*-dimensional integral

$$
I(f) := \int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}
$$

by an *n*-point lattice rule with generating vector $\mathbf{z} \in \mathbb{Z}_n^d$

$$
Q_{n,\mathbf{z}}(f):=\frac{1}{n}\sum_{k\in\mathbb{Z}_n}f\bigg(\frac{\mathbf{z}k \bmod n}{n}\bigg).
$$

Worst-case error for $f \in \mathcal{H}_{\alpha}$ for a given algorithm Q_n (e.g. $Q_{n,z}$):

$$
e^{\det}(Q_n,\mathcal{H}_{\alpha}) := \sup_{\substack{f \in \mathcal{H}_{\alpha} \\ \|f\|_{\alpha} \leq 1}} |f(f) - Q_n(f)|.
$$

Lattice rule $=$ equal weight quadrature using lattice points

For $f \in \mathcal{H}_{\alpha}$ approximate the *d*-dimensional integral

$$
I(f) := \int_{[0,1]^d} f(\mathbf{x}) \, \mathrm{d}\mathbf{x}
$$

by an *n*-point lattice rule with generating vector $\mathbf{z} \in \mathbb{Z}_n^d$

$$
Q_{n,\mathbf{z}}(f):=\frac{1}{n}\sum_{k\in\mathbb{Z}_n}f\bigg(\frac{\mathbf{z}k \bmod n}{n}\bigg).
$$

Worst-case error for $f \in \mathcal{H}_{\alpha}$ for a given algorithm Q_n (e.g. $Q_{n,z}$):

$$
e^{\det}(Q_n,\mathcal{H}_{\alpha}) := \sup_{\substack{f \in \mathcal{H}_{\alpha} \\ \|f\|_{\alpha} \leq 1}} |f(f) - Q_n(f)|.
$$

Lattice rule $=$ equal weight quadrature using lattice points

For $f \in \mathcal{H}_{\alpha}$ approximate the d-dimensional integral

$$
I(f) := \int_{[0,1]^d} f(\mathbf{x}) \,\mathrm{d}\mathbf{x}
$$

by an *n*-point lattice rule with generating vector $\mathbf{z} \in \mathbb{Z}_n^d$

$$
Q_{n,\mathbf{z}}(f):=\frac{1}{n}\sum_{k\in\mathbb{Z}_n}f\bigg(\frac{\mathbf{z}k \bmod n}{n}\bigg).
$$

Worst-case error for $f \in \mathcal{H}_{\alpha}$ for a given algorithm Q_n (e.g. $Q_{n,z}$):

$$
e^{\det}(Q_n,\mathcal{H}_{\alpha}) := \sup_{\substack{f \in \mathcal{H}_{\alpha} \\ \|f\|_{\alpha} \leq 1}} |I(f) - Q_n(f)|.
$$

 \rightsquigarrow For good lattice rule $Q_{n,\mathbf{z}}$ converges like $n^{-\alpha} \|f\|_{\alpha}$. Optimal. Bakhvalov. Matching upper and lower bounds (mod logs).

"Monte Carlo type" methods: $\frac{1}{n}\sum_{k=1}^n f(\boldsymbol{\mathsf{x}}_k)$

What kind of cubature/quadrature method to use for d large?

- A product of classical quadrature rules? (Product of weights!) \rightarrow n = m^d \Rightarrow The curse "by construction"!
- The plain Monte Carlo method: $x_k \sim U[0,1)^d$.

 \rightarrow Free to choose *n*.

• Quasi-Monte Carlo methods: using some algebraic structure. \rightarrow Free to choose *n*.

Korobov space of dominating mixed smoothness $\alpha > 0$:

$$
\mathcal{H}_{\alpha}:=\left\{f\in L_2([0,1]^d):\|f\|_{\alpha}^2:=\sum_{\boldsymbol{h}\in\mathbb{Z}^d}r_{\alpha}^2(\boldsymbol{h})\,|\hat{f}(\boldsymbol{h})|^2<\infty\right\},\,
$$

with

$$
r_{\alpha}(\boldsymbol{h}) := \gamma_{\text{supp}(\boldsymbol{h})}^{-1} \prod_{j \in \text{supp}(\boldsymbol{h})} |h_j|^{\alpha}.
$$

Weighted spaces: Sloan & Woźniakowski (2001), Novak & Woźniakowski (2008, 2010, 2012), . . .

More on norms tomorrow. . .

Example of a good lattice rule

Eg: $n = 21$ and $z = (1, 13)$: Fibonacci rule: $n = F_k$, $z = (1, F_{k-1})$.

Only $d = 2$, $d > 2$: Constructive methods for deterministic error: Fast component-by-component (Nuyens & Cools 2006, ...) \rightarrow Fixed vector z for a given *n*. (Or sequence of $n = p^m$, Cools, Kuo & Nuyens 2006).

What can we do with lattice points???

• INT: The integration problem: approximate

$$
I(f):=\int_{[0,1]^d}f(\mathbf{x})\,\mathrm{d}\mathbf{x}.
$$

- APP: The function approximation problem: find an approximation for an $f \in \mathcal{H}$ minimizing some norm.
- Collocation methods.
- Least-squares methods.
- \bullet ...

Note: If you are familiar with information based complexity (IBC): Since we use the lattice points as sample points this is the setting of standard information, sometimes called $\mathsf{\Lambda}^{\text{std}}.$

Lots of work: Korobov, Sloan, Temlyakov, Niederreiter, a lot of people in this audience. . .

[First demo](#page-11-0)

- A (rank 1) lattice point generator (as in Generator).
- The "order" of the points.
- Rotated grids or grids?
- Use for numerical integration.
- Good and bad rules?

[Error for an integrand;](#page-13-0) [Worst-case error for function space](#page-13-0)

Error for an integrand using lattice rule approximation

For $f \in \mathcal{H}_\alpha$, with $\alpha > 1/2$, or actually, for f with abs. conv. Fourier series, "Wiener algebra",

$$
f(\mathbf{x}) = \sum_{\mathbf{h} \in \mathbb{Z}^d} \hat{f}(\mathbf{h}) e^{2\pi \mathrm{i} \, \mathbf{h} \cdot \mathbf{x}}, \qquad \hat{f}(\mathbf{h}) := \int_{[0,1]^d} f(\mathbf{x}) e^{-2\pi \mathrm{i} \, \mathbf{h} \cdot \mathbf{x}} \, \mathrm{d} \mathbf{x},
$$

Error for an integrand using lattice rule approximation

For $f \in \mathcal{H}_\alpha$, with $\alpha > 1/2$, or actually, for f with abs. conv. Fourier series, "Wiener algebra",

$$
f(\mathbf{x}) = \sum_{\mathbf{h} \in \mathbb{Z}^d} \hat{f}(\mathbf{h}) e^{2\pi \mathrm{i} \, \mathbf{h} \cdot \mathbf{x}}, \qquad \hat{f}(\mathbf{h}) := \int_{[0,1]^d} f(\mathbf{x}) e^{-2\pi \mathrm{i} \, \mathbf{h} \cdot \mathbf{x}} \, \mathrm{d} \mathbf{x},
$$

we have

$$
E(f) := \frac{1}{n} \sum_{k \in \mathbb{Z}_n} f\left(\frac{zk \bmod n}{n}\right) - \int_{[0,1]^d} f(x) dx = \sum_{\substack{0 \neq h \in \mathbb{Z}^d \\ h \cdot z \equiv 0 \pmod{n}}} \hat{f}(h),
$$

by the character sum for \mathbb{Z}_n , we have for $a = z \cdot h \in \mathbb{Z}$,

$$
\frac{1}{n}\sum_{k\in\mathbb{Z}_n}\exp(2\pi i k a/n)=\mathbb{1}\{a\equiv 0\ (\mathrm{mod}\ n)\}.
$$

(Show other slides with duals. . .)

Remember the definition:

Worst-case error for $f \in \mathcal{H}_{\alpha}$ for a given algorithm Q_n (e.g. $Q_{n,z}$):

$$
e^{\det}(Q_n,\mathcal{H}_{\alpha}) := \sup_{\substack{f \in \mathcal{H}_{\alpha} \\ \|f\|_{\alpha} \leq 1}} |f(f) - Q_n(f)|.
$$

Spaces based on series representations & Koksma–Hlawka

Assume L_2 -ONB $\{\phi_h\}_h$, $\phi_0 = 1$, $Q_n(1) = 1$, and abs. summ.

$$
f(\mathbf{x}) = \sum_{\mathbf{h}} \hat{f}(\mathbf{h}) \phi_{\mathbf{h}}(\mathbf{x}), \quad \text{with} \quad \hat{f}(\mathbf{h}) := \int_{[0,1]^d} f(\mathbf{x}) \overline{\phi_{\mathbf{h}}(\mathbf{x})} \, \mathrm{d}\mathbf{x},
$$

Spaces based on series representations & Koksma–Hlawka

Assume L_2 -ONB $\{\phi_h\}_h$, $\phi_0 = 1$, $Q_n(1) = 1$, and abs. summ.

$$
f(\mathbf{x}) = \sum_{\boldsymbol{h}} \hat{f}(\boldsymbol{h}) \phi_{\boldsymbol{h}}(\mathbf{x}), \quad \text{with} \quad \hat{f}(\boldsymbol{h}) := \int_{[0,1]^d} f(\mathbf{x}) \overline{\phi_{\boldsymbol{h}}(\mathbf{x})} \, \mathrm{d}\mathbf{x},
$$

then, for $r_{\alpha,\gamma}$ (h) > 0 an "increasing" function,

$$
|I(f) - Q_n(f)| = \left| \sum_{h \neq 0} \hat{f}(\boldsymbol{h}) Q_n(\phi_{\boldsymbol{h}}) r_{\alpha, \gamma}(\boldsymbol{h}) r_{\alpha, \gamma}^{-1}(\boldsymbol{h}) \right|
$$

\$\leq \left(\sum_{\boldsymbol{h}} \left| \hat{f}(\boldsymbol{h}) \right|^p r_{\alpha, \gamma}^p(\boldsymbol{h}) \right)^{1/p} \left(\sum_{\boldsymbol{h} \neq 0} |Q_n(\phi_{\boldsymbol{h}})|^q r_{\alpha, \gamma}^{-q}(\boldsymbol{h}) \right)^{1/q}\$
norm \$\times\$ worst-case error*

(See next slide.)

$$
|I(f) - Q_n(f)| = \left| \sum_{\mathbf{h} \neq 0} \hat{f}(\mathbf{h}) Q_n(\phi_{\mathbf{h}}) r_{\alpha, \gamma}(\mathbf{h}) r_{\alpha, \gamma}^{-1}(\mathbf{h}) \right|
$$

\$\leq \left(\sum_{\mathbf{h}} \left| \hat{f}(\mathbf{h}) \right|^p r_{\alpha, \gamma}^p(\mathbf{h}) \right)^{1/p} \left(\sum_{\mathbf{h} \neq 0} |Q_n(\phi_{\mathbf{h}})|^q r_{\alpha, \gamma}^{-q}(\mathbf{h}) \right)^{1/q}\$
norm \$\times\$ worst-case error^{*}

For $1 < p \leq \infty$ and compatible choices of ϕ_h , Q_n and $r_{\alpha,\gamma}$ we can find a "worst-case" representer $\xi(x)$ for which

$$
|Q_n(\xi) - I(\xi)|^{1/q} = e(Q_n, \mathcal{F}_d), \tag{*}
$$

independent of the particular Q_n , e.g., Fourier series and lattice rules, Walsh series and digital nets, see Nuyens (2014) and $Hickernell (1998a,b).$

Reproducing kernel Hilbert spaces, $p = q = 2$

Given a one-dimensional reproducing kernel $K(x, y) = \overline{K(y, x)}$. Suppose $\mathcal{H}(K)$ is separable: $\mathcal{H}(K) = \text{span}\{\phi_h\}_h$ and $\phi_0 = 1$. Determine the eigenvalues and eigenfunctions, and assume $\lambda_0 = 1$.

$$
\int_{[0,1]} \phi(x) \overline{K(x,y)} dx = \lambda \phi(y).
$$

Then

$$
K(x,y) = \sum_{h} \frac{\phi_{h}(x)}{\sqrt{\lambda_{h}}} \frac{\overline{\phi_{h}(y)}}{\sqrt{\lambda_{h}}} = \sum_{h} \frac{\phi_{h}(x)}{\|\phi_{h}\|_{L_{2}}} \frac{\overline{\phi_{h}(y)}}{\|\phi_{h}\|_{L_{2}}},
$$

the ϕ_h are L_2 -orthogonal, with $\|\phi_h\|_{L_2} =$ √ λ_h and $\|\phi_h\|_{\mathcal{H}} = 1$, with

$$
\langle f, g \rangle_{\mathcal{H}} = \sum_{h} \lambda_h \hat{f}(h) \overline{\hat{g}(h)}, \qquad ||f||_{\mathcal{H}}^2 = \sum_{h} \lambda_h \left| \hat{f}(h) \right|^2.
$$

Multivariate weighted reproducing kernel Hilbert space

Use the one-dimensional space as building block for d dimensions by taking weighted tensor products (tensor product basis):

$$
K(\mathbf{x}, \mathbf{y}) = \sum_{u \subseteq \{1, \dots, d\}} \gamma_u \prod_{j \in u} K(x_j, y_j) = \sum_{\mathbf{h}} \gamma_u(\mathbf{h}) \prod_{j=1}^d \frac{\phi_{h_j}(x_j)}{\sqrt{\lambda_{h_j}}} \frac{\overline{\phi_{h_j}(y_j)}}{\sqrt{\lambda_{h_j}}} = \sum_{\mathbf{h}} r_{\alpha, \gamma}^{-2}(\mathbf{h}) \phi_{\mathbf{h}}(\mathbf{x}) \overline{\phi_{\mathbf{h}}(\mathbf{y})},
$$

With W (You could now interpret α as the decay of the eigenvalues.)

$$
r_{\alpha,\gamma}^{-2}(\boldsymbol{h}) = \gamma_{\mathfrak{u}(\boldsymbol{h})} \prod_{j \in \mathfrak{u}} \lambda_{h_j}^{-1} = \gamma_{\mathfrak{u}(\boldsymbol{h})} \prod_{j=1}^d \lambda_{h_j}^{-1},
$$

and $\mathfrak{u}(\boldsymbol{h})=\{h_j:h_j\neq 0\}=\text{supp}(\boldsymbol{h}).$ Now, with $\gamma_\emptyset=1$, $Q_n(1)=1$,

$$
e^{2}(Q_{n};\mathcal{H})=-1+\sum_{k,\ell=1}^{n}w_{k}w_{\ell}K(\mathbf{x}_{k},\mathbf{y}_{\ell}).
$$

For a shift-invariant space and lattice rule

For a shift-invariant space we have

$$
K(\mathbf{x},\mathbf{y})=K(\mathbf{x}-\mathbf{y},0)
$$

and for a lattice rule we have

$$
\mathbf{x}_k - \mathbf{x}_{k'} = \mathbf{x}_{k-k' \bmod n},
$$

all on the torus $[0,1)^d$.

Hence:

$$
e^{2}(Q_{n,z}; \mathcal{H}) = -1 + \sum_{k,\ell=1}^{n} w_{k} w_{\ell} K(\mathbf{x}_{k}, \mathbf{y}_{\ell})
$$

= -1 + $\sum_{\ell=1}^{n} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{n} K(\mathbf{x}_{k-\ell \mod n}, 0)$
= -1 + $\frac{1}{n} \sum_{k=1}^{n} K(\mathbf{x}_{k}, 0).$

[Fast component-by-component](#page-24-0) [constructions](#page-24-0)

Construction of lattice rules and polynomial lattice rules

Point sets constructed for weighted spaces using fast component-by-component constructions using number theoretic transforms.

See <https://www.cs.kuleuven.be/~dirkn/qmc4pde/> and <https://www.cs.kuleuven.be/~dirkn/fast-cbc/>.

See, e.g., N. & Cools (2006a,2006b), Cools, Kuo, & N. (2006), Dick, Kuo, Le Gia, N. & Schwab (2014), N. (2014), Kuo & N. (2016), . . . Variations and speedups by: Gantner, Kritzer, Laimer, Leobacher, Pillichshammer, Schwab, ... New methods: Ebert, Kritzer, N., Osisiogu (2021), Kuo, N., Wilkes (2023), N., Wilkes (2023), . . . 17

Point generators

- Matlab/Octave: procedural generators like Matlab's rand:
	- latticeseq_b2.m: radical inverse lattice sequence generator,
	- digitalseq_b2g.m: gray coded radical inverse digital sequence generator (incl. higher-order, max 53 bit).
- Python: iterator classes, which can be used as standalone point generators from the command line (__main__):
	- latticeseq_b2.py: iterator based (__iter__), set_state for parallel computing,
	- digitalseq_b2g.py: ditto, arbitrary precision using mpmath if needed.
- C++: header file based implementation with driver program for the command line:
	- latticeseq_b2. (h|cpp): complies to ForwardIterator concept, set_state for parallel computing,
	- digitalseq_b2g. $(h|cpp)$: ditto, max 64 bit.

Welcome to "The Magic Point Shop!"

Different flavours of quasi-Monte Carlo points to choose:

- Lattice rules.
- Lattice sequences.
- Polynomial lattice rules.
- Interlaced Sobol' sequences (higher-order).
- Interlaced polynomial lattice rules (higher-order).

And code $(C++$ and Matlab) to use them...

Subsidiaries: QMC4PDE: construct points for parametrised PDEs.

[Second demo](#page-28-0)

- The van der Corput sequence for $d = 1$.
- The Korobov trick.
- Estimating the error by use of standard error. . .

[The end for today](#page-30-0)

• Thanks for listening. . .

- Thanks for listening. . .
- Please ask questions. . .
- Thanks for listening. . .
- Please ask questions. . .
- Now or later...
- Thanks for listening. . .
- Please ask questions. . .
- Now or later...

Tomorrow more advanced things: weighted function spaces, function approximation, . . .